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Abstract

A method for modeling images of natural terrain is developed and applied

to the segmentation of aerial photographic data. An underlying stochastic

structure based on linear filtering concepts provides a means of modeling

the terrain in local areas of the image. Superimposed on this is a Markov

random field that describes transitions from regions of one terrain type

to another. Maximum likelihood and maximum a posteriori estimation is

applied to estimate regions of similar terrain. Results of application to

digitized aerial photographs of a rural area are presented and discussed,
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I. INTRODUCTION

The segmentation of images is a vital part of image analysis for a host

of applications. Where specific models for images are lacking, one is

forced to base the analysis on heuristic arguments and heuristically

motivated features and performance can be evaluated only on an empirical

basis. Much of the work in image analysis has fallen into this category.

When one is able to restrict the class of images so that specific models can

be developed, the resulting analysis algorithms are placed on a much firmer

foundation and their performance can be evaluated from both analytical and

empirical considerations. We have taken the latter approach in this report.

Many images of natural terrain can be effectively characterized as two-

dimensional (2-D) random processes. The segmentation of these images into

areas of known types is important for a variety of applications including

military surveillance and reconnaissance, crop and land use data collection,

and cartography. In addition, many images other than those of terrain

contain areas of texture that can be well modeled by random processes.

This report describes a model for images based on stochastic linear filtering

concepts. Using this model, one can develop the probability density

functions for the image data. Segmentation of the image is then treated as

an estimation problem and the resulting algorithms have a clear intuitive

interpretation.

Earlier results of this research as applied to texture data were reported

in Reference 1. This report extends those results and demonstrates their

application to terrain image data. While no claim of universality is

made, the algorithms have been effective in segmenting aerial photographs

of rural terrain and provide encouragement for continued research along these

lines.

In the following section, we postulate a general class of linear filtering

models and then specialize the results somewhat for the work covered In this

report. Next, we consider segmentation as a region estimation problem and



develop maximum likelihood (ML) and maximum a posteriori (MAP) estimates for

the regions (segments). Finally, vc present some results of application of

the ML and MAP algorithms to aerial photographic data and discuss and compare

the two approaches.
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II. LINEAR FILTERING MODELS FOR IMAGES

A. In this section, we consider models for an image of the form

F'=(nm) a jF'(n-i,m-j) + IbijW(n-i,m-j) (la)

(i,j)#(O,O)

F(n,m) F'(n,m) + G (lb)

nc[O,N-1]

mF [O,M-1]

where a and B are finite-extent masks covering the filtered points, W(n,m)

are a set of independent identically distributed zero mean random variables,

and G is a constant representing the mean value of the image. In general,

G could be made a function of the image coordinates (n,m) but this implies a

form of non-stationarity and an associated registration problem. Since the

images to be dealt with are (at least locally) stationary, we shall not make

that generalization.

In the following, it will be assumed that a and B are chosen so that F'

is recursively computable [2,31 given W and vice versa. This will lead to

simplifications in the analysis to follow.

If the vectors f, w, and . represent an ordered set of the corresponding

array points (derived for example by scanning rows of the image), then

Eq. (1) can be written in a matrix formulation as

A(f-g) = B w + y (2)

where A and B are matrices whose non-zero elements are derived from the terms

aij and bij in Eq. (1) and y represents a set of boundary conditions imposed

by the finite extent of the image. In general, these boundary conditions

should be modelled as random variables or the parameters of the model should

3



be made space-varying over the region where the spatial masks a and a are

not fully contained within the boundaries of the image (see Ref. 4 for a

discussion of this problem with respect to 1-D signals). The inclusion of

these effects, however, is of little significance in most problems of

practical interest and merely serves to complicate the analysis. Thus, it

is convenient to set the boundary conditions y to 0 and accept the approxi-

mation that results. Since the terms W(n,m) are independent, one can

solve Eq. (2) for w and express the multivariate probability density function

for the image as

pf(f) 1 p (B-iA _
- IA-BI -

(N-1,M-l)

- Pw (E(n,m)) 
(3)

(n,m)=(O,O)

where the notation E(n,m) is used to represent the ordered components of
-1

the vector B A(f-g) and where we have used the fact that since both A and

B correspond to recursively computable masks, their determinants are equal

to one. Further, since mask a has a recursive form, E(n,m) can be computed

from

E(n,m) - -2 bijE(n-i,m-J) - a F'(n-i,m-j) (4)

(i,j)#(0,0)

4



Equation (3) provides a formula for the probability density function of

image F in terms of the probability density function for the driving

variables W(n,m) and is key to the estimation theoretic approaches that are

taken in this report. Later, explicit forms for the filter and the density

Pw will be assumed and more specific results based on these forms will be

derived. However, the methods just discussed are capable of reprclenting

only images with homogeneous properties such as an image of a single type

of terrain*. The images to be considered for segmentation contain a number

of different homogeneous regions. Thus, it Is necessary to add another

level of structure to the model to represent these more typical images. This

topic will be discussed next.

B. Consider an image such as that depicted in Figure 1 consisting of

regions RIR 2,. ,RP . It will be assumed that within each region, the

image can be represented by a model of the type discussed in Part A. Denote

the probability density function for the driving terms in a region Ri of type

k by pk(.). Note that there may be more than one region of a given type.
i ki

Then, ignoring boundary effects, we can express the probability density for

the image, given the regions R1 ,... OR, as

P(FIR 1 ..... P) Pk (E k (n,m)) (l k (E k (n,m)•

,(n m)cR 1 1 n,m)cR P2

n,m) Rp P (F (n'm) (5)

* In this report, we shall refer to images whose statistical characteristics

are spatially invariant as "stationary" and use the term "homogeneous" only
in a loose intuitive sense. Thus, the word homogeneous should not he con-
fused with the mathematical property used in the literature on random fields.
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Fig. 2. Illustration of state dependencies for Markov chain.



where the subscript k i on the residual terms E(n,m) indicates that these terms

wti'e computed using the filter of type k.. Equation (5) or its logarithm1

can be used as a likelihood function to generate maximum likelihood estimates

for tile regions. This procedure will be detailed in bection III. However,

maximum likelihood estimation implicitly assumes that all region configurations

are equally likely and this is seldom the case for most images. In reality,

regions for a given class of images may be more Jikely to be of some approxi-

mate size and density and it is not unusual to have some rough prior infor-

mation about the occurrence of regions within the image. When such prior

information is available, a better procedure is to use some form of Bayes

estimation. This can be approo'ched as follows.

Let the occurrence of regions within an image be modeled through region

transition statistics. In particular, define the "state" s(n,m) of a point

(n,m) as the region type to which that point has been assigned. Thus, if

there are K region types, the state may take on values in the set of integers

UI,2,...,K1. Next, assume that the state of a point is stochasticallv

dependent on some adjacent set of states in a support region S (see Fig. 2).n ,m

In particular, following Kaufman et al,[5], we shall assume for the moment

that the states form a Markov chain specified by transition probabilities

Pr[s(n,m)S n,m]*. The Markov chain imposes constraints on the shape of the

state support region. For example, the symmetric region indicated by the

dashed lines in Figure 2 is not allowed. We shall relax the constraint on

S later by allowing the probabilistic structure of the states to haven ,n

other Markov dependencies. However, the Markov chain assumption will permit

development of the estimation equations for the state assignments in a

straightforward manner. Since the set of all possible state assignments is

one to one with the set of all possible divisions of the image into regions,

we shall have reached our objective.

* Our notation is convenient but may be somcwhat cnnfusing. A proper (but

more cumbersome) notation would be Pr[s(n,m)=s S =S I where s is an
0 0 0

integer in the set [1,2,...,K} and S 0 is composed of integers in the same

set. Thus, when we write Pr[lIS n,m  as in Eq. (14), the reader should

interpret this as Pr[s(n,m)=11S =S
n,m 0

7



Let S represent a particular set of state assignments for all points in

an image. Our goal is to evaluate Pr[S). If the image is N by N pixels in

size, then let the pixels be numbered from 1 to N
2 according to the ordering

imposed by the Markov chain. Then we can write

Pr[S] = Pr[sN2, sN2_l'....s ]

= Pr[sN2IsN2_l,...,sl]Pr[sN2_l[sN2_2 ... ,Sl]-.. Pr[s 2 1s]' PrtsI ]

(6)

Let Sk be the support region for s Then when Sk is completely within the

boundary of the image, we have Pr[sklsk l,... s' = Pr[skISk]. When Sk is

not completely within the image boundary, i.e., when sk does not have full

support, we shall approximate Pr[sklSksl,...,s I ] by a term of the same form

where zeros are inserted for the states not present. Thus, Eq. (6) can be

expressed as

N2

Pr[S] = 7 Pr[sklSk] = T Pr[s(n,m)IS 1 (7)

k=1 (n,m) ,m
in image

Equations (5) and (7) can be combined to develop conditions for the maximum

a posterior! estimates of the state assignments which define the regions.

This is discussed in the next section.

8
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III. SEGMENTATION AS A REGION ESTIMATION PROBLEM

The basic concepts for approaching segmentation as a region estimation

problem were developed in the previous section. In this section, we will

restrict attention to a particular class of linear filtering models and

develop some more specific results.

The assumptions that are made in the following are that the model of

Eq. (1) is purely autoregressive so that bij = 6ij (the Kronecker delta),

that the mask a has a quarter plane causal form, i.e., aij is non-zero only

for iE[O,I] and jE[O,J] and that the W(n,m) are Gaussian with density function

2
p(w) exp (- ) (8)

For the causal autoregressive model, the filter coefficients can be

efficiently computed using the algorithm described in Reference 6.

Taking minus twice the log of Eq. (5) and applying Eq. (8) we obtain

-2 Zin p(FIR 1,R2 .. ) k + Zinc +

[E 2 (nm)

°k

+Ek (n,m) + 2 n 2 T(

P 2  knm)i

i=l (n,m) 1  a 2

[ -- k -c I k i.
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For the maximum likelihood procedure, the number of regions P and the regions

themselves are assumed to be deterministic parameters of the density function.

An ML estimate for these parameters is obtained by choosing values that maxi-

mize Eq. (5) or, equivalently, minimize Eq. (9). A moment's reflection

indicates that Eq. (9) is minimized if every point (n,m) in the image is

assigned to a region Ri or type ki such that the term in brackets is minimum.

For the case of two region types (but possibly multiple regions), we are led

to a segmentation rule of the form

E1E(nm) 2D E2(nm) 2

2 + kno > + kno 2

1 '~' 2

where the number above or below the inequality indicates the region type to

which the point (n,m) will be assigned if the inequality holds.

Since the ML method leads to a decision rule that assigns points

to region types without regard to the assignment of adjacent points, one

might expect this segmentation rule to produce a number of false assignments

leading to a somewhat "spotty" result. The examples in the next section show

that this is in fact the case. The main advantage of the ML method is that

it is quick and easy to apply. The spottiness of the result can some-

times be removed by lowpass filtering.

An improved form of region estimation is Bayes estimation where the

regions are treated not as unknown parameters, but as random quantities

whose statistical properties are described by the Markov transition model

developed in the previous section. In particular, we will consider maximum

a posteriori (MAP) estimation where we maximize the probability of a given

set of regions conditioned on our observation of the image. From Bayes rule,

the a posteriori probability can be written as

Pr[R .,R F] = P(FIR1IR2,....R p)Pr[RI,R2,...,RP ]

Pr[R1 'R2  .P F = p(F) (11)

10



Since the denominator is not a function of the regions, it is only necessary

to be concerned with the terms in the numeratnr. Ob3erve, first, that since

the set of all possible region assignments for an image is one-to-one with

the set of all possible state assignments for the pixels, the second term

in the numerator of Eq. (11) is given by Eq. (7). Next, observe that the

double summation in Eq. (9) can be written as

[ E ki(n,m) 1 E2~ )(~m n
i=1 (n iR + In a2  2 s(n,m)

Sk ki all (n,m) a2 snnm)

2 5 (n ,m)

(12)

Now, taking minus twice the log of Eq. (11), using Eqs. (7), (9) and

(12), and eliminating the constant terms, we find the MAP estimate requires

that the pixel states be chosen to minimize

+(n,m) + a -2 In Pr[s(n,m)JS n (13)
all (n,m) 2(nm)

Ss(nm)s(n,m)

This requires that each term in the sum be separately minimized. In the

case of two region types, this reduces to the conditions

E2(nm) in rE 2(nm) 2
2 na 2RPr[IjSn,m < n2 -2n Pr[21Sn

a1 02 nm

(14)

11
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Since the states are assumed zo fcrm a Markov chain, Eqs. (13) or (14) can

be solved for the states recursively according to the ordering of the chain.

The segmentation algorithms as thus far developed have the characteristic

that all of the processing of the image to effect the segmentation is direc-

tional. Since many terrain images have no preferred direction, it is desir-

able to perform operations on the image which are omni-directional. Unfor-

tunately, 2-D filters whose outputs are recursively computable do not allow

for this symmetry. However, under certain conditions, it is possible to

allow the Markov transition probabilities tc be defined for a symmetric

state support region. Such models have been studied in the context of Markov

Random Fields [7-91.

In the case of a svmietric state support region, Eqs. (13) or (14)

can no longer be solved recursively. Solution bv dir.ct methods for any

reasonably sized images appears to be hopeless d.ince all of the N2 states

are coupled through nonlinear equations. However, the equations can be

solved by iteration as follows. An initial set of states, usually the maxi-

mum likelihood states, are assigned to the image points. The Markov trans-

ition probabilities in Eqs. (13) or (14) are then based on these state

assignments and held fixed while the equations are evaluated to determine

a new set of states. These new state estimates are now inserted into the

equations and the procedure is repeated in an iterative manner. If a stage

of iteration is reached where the state assignments no longer change, then

the MAP estimate has been found. If such a stage is not reached, this mav

be an indication that the transition probabilities are inconsistent and

should be redefined. This solution procedure bears some resemblance to

rela:tation labeling techniques [10,11] In that the state assignments are

iteratively updated by considering the state assignments of neighboring

pixels. In practice, the procedure has been found to converge tvpicallv

after 10 to 20 iterations.

12



IV. RESULTS OF SEGMENTATION

Figure 3(a) shows a digitized aerial photograph of a rural area containing

some trees and fields. The digitized image is 128 by 128 pixels in ize

with gray levels represented on a scale of 0 to ?55 (8 bits). It was

des!red to segment the image into two regions corresponding to the trees

and fields without further distinguishing between different types of trees

or fields. The data used to design the 4 by 4 pixel whitening filters for

each image class are shown in the white boxes. The resulting filters were

then applied to the entire image to perform the segmentation.

The result of ML segmentation is shown in Figure 3(b) where points in

the image that were assigned to tree regions are c.ed as black and points

assigned to field regions are coded as white. Although the true tree and

field regions are perceptually descernible, the result is very "spotty".

In fact, the I. estimate consists of not two but a multiplicity of smaller

regions. This result is not surprising based on our earlier observations

about the ML estimate,

Figuore i(c) shows the MAP segmentation of the same- scene. For

th is and the rema ining examples, the t rans it ion probabi I I t ies were

taken L,) be proportionala to the number of black or white pixe l assign-

mtents It, a square region surrounding the given pixel. In this case, tihe

state support region was taken to be 9 by 0 pixels and the number of

iterations used was 16. The MAP result clearly shows the effect of the

transition probabilities in providing connectivity in the region estimates.

There are only a relatively small number of Isolated misclassfied points.

For practical purposes, these points can he eliminated and the ara near the

hotudarv can be made smooth by post filtering. This will be I Ilustrated in

a later example.

Figure 4(a) shows another image consisting of regions of fields anI

trees. Figure 4(b) shows the MA' segmentation of this image using the filters

designed for the scene of Figure 3(a). It Is not surprising that the result

is not perfect because there are some significant differences in the gray tones

13



Fig. 3. Segmentation of an image Into regions of trees and fields:

(a) Digitized aerial photograph (128 by 128 pixels) showing train-
ing data (b) ML segmentation (c) MAP segmentation.

14
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designed on data Fig. 3(a): (a) W)intized photograph (12$ by 128
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-7

5 ilb~

F~~ ~~~~~~~~ ~ ~ ~ ~ ~~ i p gnn ioItw nlt .1dIils

tn a~ or MA s gmetnt it ion I nfti ld



Fig. 5. Steps in segmentation of two images of trees and fields:
(c) MAP segmentation of preprocessed images (d) MAP segmentation
after post median filtering.
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of each class between the two original images. The problem can be alleviated

by preprocessing both images prior to segmentation to render the average

tonal value in local regions a middle gray. The preprocessing involves

median filtering to minimize artifacts in the boundary regions between

terrain segments followed by mean filtering to insure that the result will

be close to a middle gray. In particular, the preprocessed image H is

defined by the equations

H'(n,m) = F(n,m) - Median{F(n,m)}

A(n,m) i H' (n,m)

+1
max

H(n,m) H'(n,m) -A(n,m) + 2

where ? is a small region surrounding the point (n,m), M is the number of

points in J and T is the largest tonal value in the image representation,max

i.e., that corresponding to pure white. For these experiments, W was taken

to be a square region 11 by 11 pixels in size and Tmax was equal to 255.

This preprocessing is a modified version of a more general procedure that

can be used in various applications to locally expand or compress image

contrast [12).

Figure 5 shows the steps involved in segmentation of the two images.

Figure 5(a) shows the two original images. Figure 5(b) shows the pre-

processed images with the data used for filter design shown in the white

boxes. Figure 5(c) shows the MAP segmentation results and Figure 5(d) shows

the final segmentation results after post median filtering. Except for a

small area on the left border of the left hand image (probably due to some

local image abnormality not compensated for by the preprocessing) the final

results show a clean and accurate segmentation of the images.



Another experiment involved further segmentation within one of the

segments determined in the previous experiments. The area of consideration

is shown in the white box in Figure 6(a) and enlarged in Figure 6(b). Within

the tree region, two types of textures can be discerned which correspond to

small and large trees. Figure 7(a) shows the MAP segmentation of the tree

area where the large trees are coded in black and the remainder of the image

is coded in white. The boundary is outlined in gray and superimposed in

white on the original image in Figure 7(b). The result was found to be very

accurate when compared to human perception of the tree boundary on the

original photographic data.

At the time of this report, experiments involving more than two classes

of terrain have not been performed. However, the two-class experiments

described suggest that segmentation might well be carried out in a hierarchical

layered form where an initial segmentation into gross categories is first

performed and then addition segmentation is performed within the segments

as necessary. Further experiments will have to be conducted to determine

the trade-offs between such a layered approach and the direct segmentation

into a number of classes in a single step.

19
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Fig. 6. Photograph used for tree segmentation experiment:

(a) Original digitized image (b) Enlarged section of image
used for experiment.

Fig. 7. MAP segmentation for tree region of Fig. 6(b):
(a) MAP segementation (b) Image with superimposed tree
boundary.

20
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V. CONCLUSIONS

The segmentation of arbitrary images is a difficult problem because of

the wide diversity of image data and the corresponding difficulty to estab-

lish models of sufficient generality. When the class of images can be

restricted, model development is more feasible and segmentation algorithms

can be designed that have a firm theoretical foundation. Images of natural

terrain form such a class and their segmentation is an important aspect of

automated image analysis for reconnaissance and surveillance, cartography

and other similar applications.

This report described a class of models for terrain images with two

levels of structure. The underlying structure is based on stochastic

filtering concepts and provides a means of representing the texture-like

quality in local regions of terrain. Superimposed on this structure is a

Markov random field that describes transitions from one region type to another.

Using the models developed here, we considered segmentation as a region *
estimation problem and explored maximum likelihood and maximum a posteriori

estimation procedures. The ML approach ignores the Markov structure that

describes the occurrence of regions and yields an algorithm which is simple

to apply but produces "spotty" results. The MAP approach leads to a set of

conditions that must be solved by iteration but produces a more connected

and generally more desirable result. Examples of both procedures were given

on aerial photographic data of natural terrain. The examples suggested that

segmentation could be effectively carried out with a layered strategy

beginning with a gross segmentation of the image and proceeding to more

detailed levels of segmentation within the original segments. Further

research would be necessary to study the trade-offs involved in this

approach versus an approach that segments the image into many different

categories in a single step.

21
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